A Survey on Recurrent Neural Network Based Modelling of Gene Regulatory Network

ثبت نشده
چکیده

The correct inference of gene regulatory networks (GRN) remains as a fascinating task for researchers to understand the detailed process of complex biological regulations and functions. With availability of large dimensional microarray data, relationships among thousands of genes can be extracted simultaneously that is a reverse engineering problem. Among the different popular models to infer GRN, Recurrent Neural Networks (RNN) are considered as most popular and promising mathematical tool to model the dynamics of, as well as to infer the correct dependencies among genes from, biological data like time series microarray. RNN is closed loop Neural Network with a delay feedback. By observing the weights of RNN model, it is possible to extract the regulations among genes. Several metaheuristics or optimization techniques were already proposed to search the optimal value of RNN model parameters. In this review, we illustrate different problems regarding reverse engineering of GRN and how different proposed models can overcome these problems. It is observed that finding out the most suitable and efficient optimization techniques for the accurate inference of small artificial, large artificial, Dream4 Network, and real world GRNs with less computational complexity are still an open research problem to all.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

A Bi-level Formulation for Centralized Resource Allocation DEA Models

In this paper, the common centralized DEA models are extended to the bi-level centralized resource allocation (CRA) models based on revenue efficiency. Based on the Karush–Kuhn–Tucker (KKT) conditions, the bi-level CRA model is reduced to a one-level mathematical program subject to complementarity constraints (MPCC). A recurrent neural network is developed for solving this one-level mathematica...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016